AI Models Integration
Managing LLM and embedding models
AI/Run CodeMie provides a way to configure LLM and embedding models from different cloud providers. Configuration file can be found by path in container: config/llms.
The MODELS_ENV is used to specify the environment for the models. For example, MODELS_ENV=dial will use the models from the config/llms/llm-dial-config.yaml file (Pattern: llm-<MODELS_ENV>-config.yaml).
Example of providing LLM and embedding models for the custom environment:
- Go to the
codemie-helm-charts/codemie-api/values.yamlfile - Fill the following values to create and mount custom configmap to AI/Run pod:
extraEnv:
- name: MODELS_ENV
value: <project-name>
extraVolumeMounts: |
...
- name: codemie-llm-customer-config
mountPath: /app/config/llms/llm-<project-name>-config.yaml
subPath: llm-<project-name>-config.yaml
...
extraVolumes: |
...
- name: codemie-llm-customer-config
configMap:
name: codemie-llm-customer-config
...
extraObjects:
- apiVersion: v1
kind: ConfigMap
metadata:
name: codemie-llm-customer-config
data:
llm-<project-name>-config.yaml: |
llm_models:
- base_name: "gpt-4o-2024-08-06"
deployment_name: "gpt-4o-2024-08-06"
label: "GPT-4o 2024-08-06"
multimodal: true
enabled: true
provider: "azure_openai"
default_for_categories: [global]
cost:
input: 0.0000025
output: 0.000011
embeddings_models:
- base_name: "ada-002"
deployment_name: "text-embedding-ada-002"
label: "Text Embedding Ada"
enabled: true
provider: "azure_openai"
default_for_categories: [global]
cost:
input: 0.0000001
output: 0